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Abstract. The exchange–correlation energyExc is a significant part of the total energy of
the quasi-two-dimensional electron gas. We investigate the performance of three-dimensional
density functionalsExc[n] in this system, showing how the local density approximation (LDA), the
generalized gradient approximation (GGA), and the meta-GGA behave as functions of quantum
well width or layer thickness. Shrinking the width in one direction is an example of non-uniform
density scaling; we generalize the non-uniform scaling condition on the exactExc[n] to densities
n(r) that are infinitely extended. We find that, although all three semi-local approximations break
down as the true two-dimensional (zero-width) limit is approached (and as the reduced density
gradients diverge almost everywhere), these approximations yield good results for wide quasi-two-
dimensional systems. The simple liquid drop model provides unexpectedly accurate results for
exchange–correlation energies of the quasi-two-dimensional electron gas, and an insight into the
domain of validity of the standard functionals. An exact-exchange functional provides the correct
approach to the true two-dimensional limit.

1. Introduction

In the past few decades, two-dimensional electronic systems have been realized in several
experiments and devices. The electrons may be found trapped by image charges on the liquid
4He surface [1], in the inversion layer of a metal–oxide–semiconductor system, or in a quantum
well of a layered superlattice of two semiconductors such as AlGaAs/GaAs [2]. From a
theoretical standpoint, these systems resemble the two-dimensional electron gas (2DEG) or
two-dimensional jellium.

Since density functional theory [3–5] has proven useful for understanding both molecules
and solids, it is natural to explore its role in electron systems of reduced dimensionality.
Additionally, the two-dimensional gas is worthy of study for many reasons of its own. First,
compared to three dimensions, the range of experimentally available electron densities is
greater in two dimensions [6], which facilitates testing many-body predictions and observing
new phenomena. Rajagopal and Kimball [7] and Dobson [8] have suggested that the 2DEG
model may fit the experimental systems more closely than the 3DEG fits conduction electrons
in metals. Second, electron correlations can be much stronger in 2D than in 3D, and quantum
effects can become very pronounced [6, 9]. Lastly, the uniform electron gas is the basis of
density functional theory and part of nature’s data set (consider sodium, a metal whose bulk
and surface properties are accurately given by the uniform electron gas model). Since this
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simple system has forged understanding of many complicated problems in density functional
theory, the 2DEG should be a logical starting point for studies in two dimensions.

The exchange–correlation energy of the 2D electron gas is our main concern here, although
numerous properties of the 2DEG [10,11] have been investigated in the last 30 years. Many-
body effects such as exchange and correlation are especially important in systems like inversion
layers on silicon or in certain quantum wells of GaAs, where the average distance between
electrons in effective bohrs,rs , is greater than unity, with the result that kinetic energy no
longer dominates. Many-electron perturbation theory [7,9,12,13] and quantum Monte Carlo
methods [14–16] have been used to calculate the exchange–correlation energy. Ando [17,18]
was probably the first to calculate properties of the 2DEG with density functional theory.
Using the local density approximation (LDA), and developing his own model of the electron
gas for charge carriers in Si, Ando calculated charge density, effective masses, theg-factor,
the self-consistent potential, and sub-band structure on Si(100) surface layers.

Using several functionals (the LDA, the generalized gradient approximation or GGA, and
the meta-GGA), we calculate exchange–correlation energies for a 2DEG of finite thickness
and examine how these functionals behave in the approach to the true 2D limit, as the thickness
shrinks to zero [19]. One way to visualize our system is to consider the electrons confined
between infinite potential barriers and to shrink the distance between barriers to zero. This
infinite-barrier model lends itself to simple wavefunctions and has been used to study the
jellium surface [20, 21]. We use it here, combined with the functionals mentioned above, to
study the 2DEG of finite thickness. A strong confining potential, such as the infinite-barrier or
the harmonic potential [22], is needed to approach the true 2D limit; self-consistent calculations
for a jellium slab cannot approach this limit. Unlike the harmonic potential, our infinite barrier
permits us to examine the liquid drop model for quasi-2D systems.

In the following sections, we set up our Kohn–Sham system of electrons subject to
infinite barriers and then test three exchange–correlation functionals as they approach the
true two-dimensional limit. This formulation of the problem is an application of non-uniform
scaling [23, 24] of the density, which we discuss as well. The liquid drop model for metals
will also be used as a simple yet surprisingly accurate way to find the exchange–correlation
energy as a function of thickness. As we demonstrate, this process of shrinking the thickness
to zero is a severe test for the local and semi-local functionals, which diverge in the exact two-
dimensional limit. This failing was first noted by Kimet al[22], who used a harmonic quantum
well model. Fully non-local functionals, such as the average density approximation [22] or
the exact-exchange functional [25] considered here, may be needed for a proper approach to
the true 2D limit.

By using the infinite-barrier model for the quantum well, we can make two investigations
which we could not have made with the harmonic potential: testing the liquid drop model and
the Seidl–Perdew–Levy [25] non-local density functional.

2. Infinite-barrier model for a quantum well

In our model quantum well, the Kohn–Sham potentialvs which confines the electrons is given
by the infinite-barrier model [26] as

vs(x, y, z) =
{

0 if 0 6 x 6 L

∞ otherwise.
(1)

This Kohn–Sham potential, acting on non-interacting electrons, producesn(x), the density
of the interacting electrons that we shall study. Using the potentialvs is expedient for two
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reasons: it yields densities that are easy to work with and avoids the need to solve the Kohn–
Sham equations self-consistently.

The 2D density parameterr2D
s is the radius of the circle that encloses on average one

electron and yields the density of electrons per unit area of theyz-plane:

n2D = 1

π(r2D
s a0)2

(2)

wherea0 = h̄2/me2 is the Bohr radius for jellium (or the effective Bohr radius ¯h2ε/m∗e2 for
a semiconductor with dielectric constantε and effective massm∗). Since we prefer atomic
units whereh̄ = m = e2 = 1 (or h̄ = m∗ = e2/ε = 1), all subsequent distances are given in
bohrs (or effective bohrs) and all energies are given in hartreesme4/h̄2 (or effective hartrees
m∗e4/h̄2ε2 for a semiconductor).

With the Kohn–Sham orbital

ψ`,k = 1√
AL

√
2 sin

(
`πx

L

)
ei(yky+zkz) (3)

whereA is a macroscopic area of theyz-plane,̀ = 1, 2, 3, . . . is the sub-band index, andki are
the Bloch wavevector components for motion parallel to the surface, we solve the Schrödinger
equation to find the energy levels

E`,k = 1

2

[(
`π

L

)2

+ k2
y + k2

z

]
. (4)

When only the lowest level is occupied (E1,k2D
F
< E2,0), the density of states of this system

begins to resemble the density of states of a 2D electron gas [2]. Herek2D
F = (2πn2D)1/2 is

the two-dimensional Fermi wavevector, so

L <

√
3

2
πr2D

s = 3.85r2D
s = Lmax. (5)

WhenL falls in this range, motion along thex-direction is frozen out, the electrons only
have two degrees of freedom alongy andz, and the system may be considered quasi-two-
dimensional. L � 3.85r2D

s yields the true two-dimensional limit, which can actually be
realized in solid-state experiments with low areal densitiesn2D. The 3D density of this quasi-
two-dimensional system is then, from equation (3),

n(x) = 2

Lπ(r2D
s )

2
sin2

(
πx

L

)
(6)

for 0 6 x 6 L, and zero otherwise. (Note that the 2D Fermi wavelength is 2π/(
√

2/r2D
s ) =

4.44r2D
s .)

3. Functionals and non-uniform density scaling

The ground-state energy of the homogeneous electron gas is

E = Ts +Ex +Ec. (7)

For any densityn(r),Ex andEc are defined in references [3,4]. (For a discussion of the density
fluctuations that contribute toEx andEc in one, two, or three dimensions, and for a related
definition of ‘correlation strength’, see reference [27].) The non-interacting kinetic energy,Ts ,
can be found exactly from the Kohn–Sham orbitals, but the exchange and correlation energy
density functionals,Ex andEc respectively, are usually approximated. In this paper we test the
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following exchange and correlation functionals: the local density approximation [28] (LDA),
the generalized gradient approximation [29–32] (GGA), and the meta-GGA [33,34] (MGGA).

For calculations involving the solid state, the LDA has been very successful [3,4], working
best for cases of slowly varying density. For our model quantum well of thicknessL, we
evaluate the LDA exchange–correlation energy per particle

ELDAxc

N
=

(∫ L

0
n(x)εunifxc (n(x)) dx

)/∫ L

0
n(x) dx (8)

whereεunifxc is the exchange–correlation energy per particle of the three-dimensional uniform
electron gas [28] andεxc = εx + εc. We use anεunifc parametrized in reference [35], while the
exchange energy per particle for the uniform electron gas is the well known

εunifx = − 3

4π
(3π2n)1/3 = − 3

4π

(9π/4)1/3

r3D
s

. (9)

Herer3D
s is the familiar local density parameter that measures the radius of the sphere enclosing

one electron in a 3D system. In the LDA, and in the subsequent GGA and MGGA calculations,
the rs-input required for the functionals is the parameterr3D

s . For calculations with the
functionals, we used anr3D

s defined as

n3D = 3

4π(r3D
s )

3
(10)

with n3D given byn(x) in equation (6).
Perdew, Burke, and Ernzerhof (PBE) [32] developed a simplified GGA for exchange and

correlation, which we will test for our model quantum well:

EGGAxc

N
=

(∫ L

0
n(x)εGGAxc (n(x),∇n(x)) dx

)/∫ L

0
n(x) dx. (11)

An alternative derivation of the PBE GGA is given in reference [36]. Like the LDA, the PBE
GGA is non-empirical.

The meta-GGA incorporates additional semi-local information into the functional, namely
the kinetic energy densityτ of the occupied Kohn–Sham orbitals. We use the meta-GGA of
Perdew, Kurth, Zupan, and Blaha [33,34] to study

EMGGAxc

N
=

(∫ L

0
n(x)εMGGAxc (n(x),∇n(x), τ (x)) dx

)/∫ L

0
n(x) dx. (12)

Before making any numerical studies, we can obtain useful insights into the functionals
from scaling arguments. A helpful tool in a density functional analysis is coordinate scaling,
because it presents a set of criteria [37] that exact functionals should meet; these conditions
can serve as a guide when developing and testing approximate functionals. A uniformly scaled
density is

nλ(x, y, z) = λ3n(λx, λy, λz) (13)

in which λ, the parameter that controls scaling, acts on all three coordinates. The exact
condition Ex [nλ] = λEx [n] [38] is satisfied by all popular approximate functionals.
The process of scaling allows one to contract or expand the density but still maintain
normalization; i.e.,∫

n d3r =
∫
nλ d3r = N.
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In our system, only a single coordinate will shrink. This is an example of non-uniform
scaling [23,39] in one dimension, namely

nxλ(x, y, z) = λn(λx, y, z). (14)

Clearly the scaling only affects thex-coordinate, and the high-density limit is reached as
λ → ∞. From equation (6) we can find our scaled density

nxλ(x) = 2

(L/λ)π(r2D
s )

2
sin2

(
πx

L/λ

)
. (15)

The parameter(L/λ) controls the scaling such that the true two-dimensional limit (L/λ �
3.85r2D

s ) is achieved whenλ → ∞. To illustrate the effect of increasingλ (whereλ = 1
recovers the original density), figure 1 shows the result of scaling by a factor of two and five
respectively. As well widthL decreases toL/2 and then toL/5, the density in thex-direction
grows more compact.

- L/5

- L/2

0 L

n(x)
AAU

� = 5

� = 2

.

.

Figure 1. An example of coordinate scaling of a quantum well density. The original densityn(x)

is related to the scaled density such thatnλ(x) = λn(λx). Note how the high-density limit starts
to take shape asλ is increased to 2 then 5. The original density isn(x) = nλ=1(x).

The behaviour of the exact-exchange and correlation functionals that results from non-
uniform scaling in the high-density limit is [24]

lim
λ→∞

Ex [n
x
λ] > −∞ (16)

and

lim
λ→∞

Ec[n
x
λ] = 0. (17)

The LDA, PBE GGA, and MGGA violate [40, 41] the condition of equation (16). Only
the PBE GGA and MGGA meet the correlation scaling requirement of equation (17). Since
all three functionals mentioned above fail to meet the non-uniform scaling requirements of
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equation (16), we can predict that they will not yield finite exchange–correlation energies for
the exact 2DEG of zero thickness. In the same way, these functionals fail for strong non-
uniform scaling of a hydrogen atom [41] or a quantum dot [22]. However, they work well [22]
for quantum dots in experimentally realistic configurations.

It appears to us that the derivations of equations (16) and (17) do not apply to the density
of equation (15), which is infinitely extended in they- andz-directions. Since the exchange
and correlation energies per electron are known [11] to tend to finite negative constants in the
exact 2D limit (L → 0), the generalized non-uniform scaling relations are probably

lim
λ→∞

1

N
Ex [n

x
λ] > −∞ (18)

and

lim
λ→∞

1

N
Ec[n

x
λ] > −∞ (19)

for a densityn(r) that is finite along thex-direction. For the 3D uniform gas, which is not
finite along any direction, the exchange energy per electron diverges to minus infinity likeλ1/3,
and the correlation energy per electron like lnλ, asλ → ∞ under one-dimensional scaling.

Even for a finite system, we suspect that the ‘=0’ on the right of equation (17) should be
replaced by ‘>−∞’, since an infinite system is only the limit of a sequence of finite ones, and
the limit of a sequence of zeros can only be zero.

4. Numerical tests of the functionals

Even though, from scaling arguments mentioned above, we expect the approximate exchange
functionals to break down as zero thickness is approached, the quasi-two-dimensional regime
of finite thickness is also of interest. In fact exchange as a function of layer thickness has been
calculated [42,43] exactly using the orbitals of equation (3); see equation (13) of reference [43].
Therefore in figure 2, we compare approximate exchange functionals to the exact result as a
function of layer thickness.

We note that the GGA and MGGA graphs look identical and for clarity of viewing we only
show the GGA results. As can be seen in figure 2, the LDA and the GGA are accurate until
the quantum well widthL grows smaller than the average planar distance between electrons.
In the region whereL � r2D

s , the GGA does a slightly better job than the LDA in matching
the exact result. However, all three functionals that we tested seem to do well in this region.

In two dimensions, there have been numerous studies of the exchange–correlation energy
[7, 9, 15, 16, 44]. One expression [25] that interpolates realistically between the high- and
low-density (Wigner crystal) limits is

ε2D
x = −0.6002

r2D
s

ε2D
c = 0.5058

[
1.3311

(r2D
s )

2

(√
1 + 1.5026r2D

s − 1
) − 1

r2D
s

]
. (20)

We use equation (20) to determine the true two-dimensional energies.
The behaviours of the correlation functionals are shown in figure 3. As expected from

scaling arguments, the GGA curve approaches zero but the LDA approaches a negative,
logarithmically infinite value. According to figure 3, an interesting contradiction arises. We
see that, asL → 0, the PBE GGA curve tends toward zero, following the non-uniform scaling
prediction of equation (17); it does not approach the exact 2D correlation energy as given
in equation (20). A possible resolution of this discrepancy was discussed at the end of the
preceding section.



DF performance for the quasi-2D electron gas 1245
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Figure 2. The exchange energy per electron as a function of thickness, for our model quantum
well with r2D

s = 4. The solid line is the exact-exchange energy as a function of thickness (see
equation (13) of reference [43]). The PBE GGA and LDA are shown alongside this curve.

L=r2D
s

0.5 1 1.5 2 2.5 3 3.5 4

-0.25

-0.2

-0.15

-0.1

-0.05

0

En
er

gy
(h

ar
tre

es
)

LDA

GGA

Figure 3. The correlation energy per electron as a function of thickness for our model quantum
well. The LDA and PBE GGA functionals are shown forr2D

s = 4. The exact value of the true
2D correlation energy, as calculated from equation (20) in the text, is represented as the dot on
the vertical axis. The PBE correlation energy approaches zero in the limit of vanishing thickness,
while the LDA correlation diverges logarithmically to minus infinity.
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We can look at theL → 0 behaviour of the PBE GGA exchange and correlation energies
from another perspective, by examining the reduced density gradient

s = 3

2(9π/4)1/3
|∇r3D

s |. (21)

In a 3D system,s, a key ingredient in the GGA, reveals how fast the density is varying on
the scale of the local Fermi wavelengthλ3D

F = 2πr3D
s /(9π/4)

1/3. Values ofs > 1 indicate
densities that are varying rapidly. In figure 4 we show this density gradient and its rapid
increase asL shrinks. The divergence ofs almost everywhere asL → 0 shows that the
density variation in this limit becomes too rapid for either LDA or GGA to work accurately.

Lmax

Lmax=4

Lmax=8

S

0.5 0.6 0.7 0.8 0.9 1

x/L

0

0.5

1

1.5

2

2.5

3

Figure 4. How the reduced density gradients(x) depends on well widthL. Heres = |∇n|/2kF n
(wherekF = (3π2n)1/3) measures how fast the density varies on the scale of the local 3D Fermi
wavelength. The solid curve representsL = Lmax , and the next two dashed curves represent
L = Lmax/4 andLmax/8 respectively, whereLmax is given by equation (5). For any given value
of x/L, s increases asL shrinks, indicating a more rapid variation in the density. In general,s > 1
is associated with rapidly varying densities.

In a 3D system,λ3D
F is also approximately the range of the exchange hole around an

electron. The LDA exchange hole is a sphere of radius∼r3D
s ∼ λ3D

F . For a quasi-2D system,
r3D
s ∼ L1/3 at fixedr2D

s ; asL → 0, the LDA exchange energy per electron of equation (9)
diverges to minus infinity likeL−1/3 (figure 2). However, theexactexchange hole is a ‘pancake’
of thicknessL and radiusr2D

s ; asL → 0, the exact-exchange energy per electron approaches
a negative constant∼1/r2D

s .
We expect LDA or GGA to work better for the combined exchange–correlation energy

than for either exchange or correlation alone. A plot of these energies together is shown in the
next section.

5. Liquid drop model and surface energies

Simple models are often useful for understanding complicated systems. One of the simplest
ways to evaluate the energy of the quasi-two-dimensional electron gas is to use the liquid drop
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model (LDM) for crystalline metals [45, 46]. In this model, the total energy of an extended
system is given by contributions from bulk and surface terms (and a curvature term which we
may ignore):

ELDM = αV + σ
∫

dA + · · · (22)

whereV is the volume and dA is an element of surface area. Hereα andσ are the volume and
surface energies of the 3D uniform electron gas. Our model quantum well has a bulk region
and two planar surfaces, each of areaA.

Because the liquid drop model defines a system with a bulk thicknessLb < L, whereLb
is the thickness of the positive background of density 3/(4π(r3D

s,b )
3), we need an expression for

the 3D bulk or background density parameterr3D
s,b . By minimizing the electrostatic moments

in the appendix, we derive

Lb =
√

1 − 6

π2
L (23)

r3D
s,b =

(
3

4

)1/3(
1 − 6

π2

)1/6(
L(r2D

s )
2
)1/3

. (24)

Now for V = ALb, we calculate an exchange–correlation energy per particle for our
quasi-2D system as a function of the bulk density parameterr3D

s,b :

εLDMxc = ELDMxc

N
= αxcV

N
+ 2

σxcA

N
= εunifxc (r3D

s,b ) + 2π(r2D
s )

2σxc(r
3D
s,b ) (25)

whereεunifx is given by equation (9), andεunifc is found in reference [35].
We tried three different surface exchange–correlation energies for the infinite-barrier

model in equation (25):σLDAxc , σPBExc , σ exactxc . The ‘exact’ value is from a short-range correl-
ation correction [47] to the random-phase approximation [48]. Becauser3D

s,b decreases asL
shrinks for a givenr2D

s , we foundσxc(r3D
s,b ) from a fit of calculated values forr3D

s,b = 0, 2.07,
4.0, and 6.0 to the interpolation formula

σxc ≈ A

(r3D
s,b )

3

1 +Br3D
s,b

1 +Cr3D
s,b

. (26)

The parameters areAexact = 0.004 068,Bexact = 3.451,Cexact = 1.688,ALDA = 0.006 318,
BLDA = 0.1885,CLDA = 0.1245, andAPBE = 0.002 575,BPBE = 2.131,CPBE = 0.6762.
According to Newns [26], the infinite-barrier model is closest to self-consistent semi-infinite-
jellium calculations [49] atr3D

s,b = 5.
In figure 5, we showεLDMxc as a function of thickness, usingσ exactxc . We also show the total

exchange–correlation energy per particle given by the PBE GGA and LDA functionals. The
simple liquid drop model works surprisingly well for very thin electron gas layers. Although
it also fails asL → 0, it provides a better approach to the true 2D limit than either the LDA
or PBE GGA functional. In all our figures, we show energies forr2D

s = 4, for which the
infinite-barrier model can be fairly realistic.

The liquid drop model can also provide an intuitive, simple-metal example of a quasi-2D
system. Consider a monolayer of sodium atoms lying in the close-packed 110 plane with bulk
spacing. For this system,r3D

s,b = 3.93, Lb = 1.436r3D
s,b = 5.64 [50], andL = 9.01. Thus

r2D
s = 3.79 andL/r2D

s = 2.38. This is roughly the smallest ratioL/r2D
s for which the LDA

and GGA functionals work, and in fact LDA has been applied to a system rather like this
one [51]. The functionals work well for a single normal atom or for a system built up from
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Figure 5. The liquid drop model (LDM) of equation (25) for our model quantum well atr2D
s = 4,

using an exact surface exchange–correlation energyσexactxc . (The surface energy term of equ-
ation (25) contributes−6% atL/r2D

s = 3.85, and−16% atL/r2D
s = 1.) The PBE GGA and LDA

functionals are shown alongside this curve. The exact-exchange–correlation energy per electron
for L → 0 is represented as a dot on the vertical axis.

such atoms. Values ofL/r2D
s less than 2.38 correspond to a non-spherical distortion of the

atoms under uni-axial compression, for which the LDA and GGA are known to fail [22,41].
Although the liquid drop model works very well for small well widths, most real-world

devices cannot achieve zero thickness of a quantum well. Is it useful even to consider this
L → 0 limit? To answer this question, we look to the quantum wells of semiconductor inter-
face devices. For a GaAs quantum well of widthL = 70 Å and hole densityn2D = 3.0× 1011

heavy holes cm−2, which was used in far-infrared absorption spectroscopy [52] of the
intersubband energy spacing in GaAs/(Al, Ga)As, we findε = 12.9, m∗/m = 0.45 [53],
the effective bohr= 15.2 Å, r2D

s = 6.8, andL/r2D
s = 0.68. Because this system is close to

the true 2D limit, that limit is in fact of physical interest. While a two-dimensional LDA can
be made (using equation (20) of this paper or equation (14) of reference [15] for example),
there is still a need for a density functional that can span the whole range of quantum well
widths. Merely satisfying equation (18), as in the GGA of reference [54], is not sufficient [22],
since equation (18) provides little guidance as regards the value of the limiting constant for
the left-hand side of equation (18).

6. Failure of the meta-GGA, and the correct approach to the true 2D limit

LDA and GGA are semi-local approximations which construct an energy density at position
r from information available atr (such asn(r)) or from an infinitesimal neighbourhood
(such as∇n(r)). Meta-GGAs make use of additional semi-local information, such as the
Kohn–Sham orbital kinetic energy densityτ(r). The meta-GGA of references [33, 34] is a
controlled extrapolation from all known gradient expansions for slowly varying densities. In
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comparison with GGA, it seems to give a better overall description of both atomization energies
for molecules and equilibrium properties of solids and surfaces [34]. However, for the energy
of the narrow quasi-2D quantum well, it fails (see figure 6) in about the same way as GGA.

L=r2D
s

0.5 1 1.5 2 2.5 3 3.5 4

-0.25

-0.2

-0.15

-0.1

-0.05

0

En
er

gy
(h

ar
tre

es
)

SPL

LDA

MGGA

Figure 6. Seidl–Perdew–Levy (SPL) exchange–correlation energy per electron as a function of
thickness, for our model quantum well withr2D

s = 4. The LDA and meta-GGA functionals are
shown alongside this curve. The exact-exchange–correlation energy per electron forL → 0 is
represented as a dot on the vertical axis.

Thus the approach to the true 2D limit seems to require a fully non-local density functional,
in which the exchange–correlation energy density at positionr is determined by information
from all positionsr′.

A fully non-local approach, which makes use of the exact-exchange energy and is correct
in the true 2D limit, has been suggested by Seidl, Perdew, and Levy [25]. They begin with the
adiabatic connection formula

Exc[n] =
∫ 1

0
dα Wα[n] (27)

whereWα[n] is the potential energy of exchange and correlation for a system of electrons
with fixed densityn(r) and variable electron–electron interactionα/|r′ − r|. Equation (7)
of reference [25] models theα-dependence of the integrand of equation (27), using only
the exact-exchange energyEx = W0, the second-order G̈orling–Levy correlation energy
EGL2
c = 1

2 dWα/dα|α=0, and the strong-interaction limitW∞.
Two of the three ingredients needed for the quasi-2D quantum well in the infinite-barrier

model are available from reference [43]:Ex from equation (13), andEGL2
c from equation (45).

ForW∞, we cannot use the three-dimensional ‘PC model’ of reference [25], which works well
for atoms and molecules [55] but fails for the more rapid density variations of the infinite-barrier
model. Instead we use the interpolation formula forr2D

s = 4

W∞(L) =
[
1.918

(
1 − L

Lmax

)
+ 1.556

(
L

Lmax

)]
W0(L) (28)
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whereW∞(L = 0) = (8/3π − 2)/r2D
s is given by the two-dimensional PC model [25],

andW∞(L = Lmax) is adjusted to reproduce the meta-GGA value forExc at L = Lmax
(W∞(L = Lmax) = −0.146 hartrees per electron forr2D

s = 4).
With these inputs, equation (8) of reference [25] yields the curve in figure 6 which shows

a correct approach to the true 2D limit. Note that second-order perturbation theory by itself is
very inadequate atr2D

s = 4 andL 6 Lmax , whereEGL2
c ≈ 3Ec.

7. Conclusions

Semi-local density functionals (LDA, GGA, meta-GGA) work for atoms, molecules, bulk
solids, and solid surfaces [34]. They also work for atomic monolayers and other wide quasi-
2D systems, but they fail as the true 2D limit is approached. The liquid drop model also fails in
this zero-thickness limit, although surprisingly it seems to work over a greater range of finite
thicknesses for quasi-2D systems. Fully non-local functionals (e.g., those that incorporate
exact-exchange) may be needed to describe the approach to the true 2D limit.

Semi-local approximations can only be expected to work when typical [56] dimensionless
density gradients (e.g., equation (21)) are not too large. In the approach to the true 2D limit,
as in the one-dimensional scaling of equations (16) and (17), these dimensionless gradients
diverge almost everywhere. As discussed elsewhere [57], there is no universal large-gradient
behaviour that can be expressed in semi-local form. The problem remains to construct a simple,
practical density functional forExc which behaves properly under non-uniform density scaling.
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Appendix A. Bulk or background density

We derive an expression for the bulk density parameterr3D
s,b as a function ofL andr2D

s . In the
infinite-barrier model for the quasi-2D electron gas in a quantum well of widthL, the positive
background charge densityn+(x) is a step function:

n+(x) =
{
nb −Lb/2 6 x 6 Lb/2

0 otherwise
(A.1)

which does not come right up to the surface of the quantum well. This surface, shown in
figure A1, is at(−L/2, L/2). The electron density, however, fully extends to the potential
barrier and is given by

n−(x) = 2

πL(r2D
s )

2
cos2

(
πx

L

)
. (A.2)

The charge density isn+(x) − n−(x). For convenience, we have relocated the origin to the
centre of the well.

The best way to determine the parametersLb andnb is to impose both the conditions
of electrical neutrality and minimization of the electrostatic energy. However, a simpler
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Figure A1. The quasi-two-dimensional electron gas in an infinite-barrier potential of widthL. The
electron density profilen− is shown. The positive backgroundn+ is represented as a step function
that does not extend to the surfaces of the barriers.

alternative that is almost equivalent is to match the first three multipole moments ofn−(x) and
n+(x) about the mid-pointx = 0:∫ ∞

−∞
dx n−(x) =

∫ ∞

−∞
dx n+(x) (A.3)∫ ∞

−∞
dx xn−(x) =

∫ ∞

−∞
dx xn+(x) (A.4)∫ ∞

−∞
dx x2n−(x) =

∫ ∞

−∞
dx x2n+(x). (A.5)

This yields equation (23). The bulk density can be written as

nb = 1

Lbπ(r2D
s )

2
= 3

4π(r3D
s,b )

3
. (A.6)

We can solve (A.6) forr3D
s,b to find equation (24).
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